1. Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1980), 64–66.
2. Bessenyei M., Páles Zs., Characterization of higher-order monotonicity via integral inequalities, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 4, 723–736.
3. Bernau S.J., The square root of positive self-adjoint operator, J. Austral. Math. Soc. 8 (1968), 17–36.
4. Bernstein F., Doetsch G., Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514–526.
5. Chmieliński J., Orthogonality equation with two unknown functions, Aequationes Math. 90 (2016), 11–23.
6. Draga S., Morawiec J., Reducing the polynomial-like iterative equations order and a generalized Zoltán Boros problem, Aequationes Math. (2016), DOI 10.1007/s00010-016-0420-4.
7. Fine N.J., Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558–591.
8. Fonseca I., Leoni G., Modern methods in the calculus of variations: L^p spaces, Springer Monographs in Mathematics, Springer Verlag, Berlin, 2007.
9. Gajda Z., On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.
10. Gát G., Almost everywhere convergence of Fejér and logarithmic means of subsequences of partial sums of the Walsh-Fourier series of integrable functions, J. Approx. Theory 162 (2010), 687–708.
11. Gát G., Karagulyan G., On convergence properties of tensor products of some operator sequences, J. Geom. Anal. (2015), DOI 10.1007/s12220-015-9662-y.
12. Ger R., Šemrl P., The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), no. 3, 779–787.
13. Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
14. Kalton N.J., The three space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243–276.
15. Kalton N.J., Convexity, type and the three space problem, Studia Math. 69 (1980/81), 247–287.
16. Kalton N.J., Peck N.T., Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30.
17. Kominek Z., A continuity result on t-Wright convex functions, Publ. Mat. 63 (2003), 213–219.
18. Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, Birkhäuser Verlag, Basel, 2009.
19. Łukasik R., Wójcik P., Decomposition of two functions in the orthogonality equation, Aequationes Math. 90 (2016), 495–499.
20. Maksa Gy., Nikodem K., Páles Zs., Results on t-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 274–278.
21. Ng C.T., Functions generating Schur-convex sums, in: General inequalities, 5 (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math. vol. 80, Birkhäuser, Basel, 1987, pp. 433–438.
22. Olbryś A., Some conditions implying the continuity of t-Wright convex functions, Publ. Math. Debrecen 68 (2006), no. 3–4, 401–418.
23. Olbryś A., Representation theorems for t-Wright convexity, J. Math. Anal. Appl. 384 (2011), no. 2, 273–283.
24. Olbryś A., On some inequalities equivalent to the Wright-convexity, J. Math. Inequal. 9 (2015), no. 2, 449–461.
25. Páles Zs., Characterization of quasideviation means, Acta. Math. Sci. Hungar. 40 (1982), 456–462.
26. Páles Zs., General inequalities for quasideviation means, Aequationes Math. 36 (1988), 32–56.
27. Páles Zs., Radácsi É.Sz., Characterizations of higher-order convexity properties with respect to Chebyshev systems, Aequationes Math. 90 (2016), 193–210.
28. Ribe M., Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), 351–355.
29. Riesz F., Nagy B.-Sz., Functional analysis, Dover Publications, Inc., New York, 1990.
30. Roberts J.W., A nonlocally convex F-space with the Hahn-Banach approximation property, in: Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976), Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 76–81.
31. Shtern A. I., Exponential stability of quasihomomorphisms into Banach algebras and a Ger-Šemrl theorem, Russ. J. Math. Phys. 22 (2015), 141–142.
32. Wright E.M., An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620–622.
Google Scholar