J. Aaronson, M. Lin, and B. Weiss, Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, Israel J. Math. 33 (1979), no. 3–4, 198–224.
Google Scholar
M.E. Becker, A condition equivalent to uniform ergodicity, Studia Math. 167 (2005), no. 3, 215–218.
Google Scholar
R.C. Bradley, Information regularity and the central limit question, Rocky Mountain J. Math. 13 (1983), no. 1, 77–97.
Google Scholar
R.C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv. 2 (2005), 107–144.
Google Scholar
R.C. Bradley, On some basic features of strictly stationary, reversible Markov chains, J. Time Series Anal. 42 (2021), no. 5–6, 499–533.
Google Scholar
R.C. Bradley, On some possible combinations of mixing rates for strictly stationary, reversible Markov chains, Rocky Mountain J. Math. 54 (2024), no. 2, 387–406.
Google Scholar
F.E. Browder, On the iteration of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), 773–780.
Google Scholar
Y.S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martingales, Second Ed., Springer Texts Statist., Springer-Verlag, New York-Berlin, 1988.
Google Scholar
Yu.A. Davydov, On the strong mixing property for Markov chains with a countable number of states, Soviet Math. Dokl. 10 (1969), 825–827.
Google Scholar
Yu.A. Davydov, Mixing conditions for Markov chains, Theory Probab. Appl. 18 (1973), no. 2, 312–328.
Google Scholar
Y. Derriennic and M. Lin, Variance bounding Markov chains, L_2-uniform mean ergodicity and the CLT, Stoch. Dyn. 11 (2011), no. 1, 81–94.
Google Scholar
P. Doukhan, P. Massart, and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 63–82.
Google Scholar
S.R. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math. 13 (1963), 551–562.
Google Scholar
J. Glück, Spectral gaps for hyperbounded operators, Adv. Math. 362 (2020), 106958, 24 pp.
Google Scholar
M.I. Gordin and B.A. Lifshits, The central limit theorem for stationary Markov processes, Soviet Math. Dokl. 19 (1978), 392–394.
Google Scholar
O. Häggström, On the central limit theorem for geometrically ergodic Markov chains, Probab. Theory Related Fields 132 (2005), no. 1, 74–82. Acknowledgement of priority in: Probab. Theory Related Fields 135 (2006), no. 3, 470.
Google Scholar
L. Hervé and F. Pène, The Nagaev-Guivarc’h method via the Keller-Liverani theorem, Bull. Soc. Math. France 138 (2010), no. 3, 415–489.
Google Scholar
I.A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), no. 4, 349–382.
Google Scholar
I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971.
Google Scholar
M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340.
Google Scholar
S.V. Nagaev, More exact limit theorems for homogeneous Markov chains, Theory Probab. Appl. 6 (1961), no. 1, 62–81.
Google Scholar
G.O. Roberts and J.S. Rosenthal, Geometric ergodicity and hybrid Markov chains, Electron. Comm. Probab. 2 (1997), no. 2, 13–25.
Google Scholar
G.O. Roberts and R.L. Tweedie, Geometric L^2 and L^1 convergence are equivalent for reversible Markov chains, J. Appl. Probab. 38A (2001), 37–41.
Google Scholar
M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Die Grundlehren der mathematischen Wissenschaften, Band 184, Springer-Verlag, New York-Heidelberg, 1971.
Google Scholar
E. Slutsky, Über stochastische Asymptoten und Grenzwerte, Metron 5 (1925), no. 3, 3–89. See lipari.istat.it/digibib/Metron.
Google Scholar
W. Stadje and A. Wübker, Three kinds of geometric convergence for Markov chains and the spectral gap property, Electron. J. Probab. 16 (2011), no. 34, 1001–1019.
Google Scholar