M. Alomari, M. Darus, and S.S. Dragomir, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math. 41 (2010), no. 4, 353–359.
Google Scholar
E.F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), no. 5, 439–460.
Google Scholar
R. Bellman, On the approximation of curves by line segments using dynamic programming, Communications of the ACM 4 (1961), no. 6, p. 284.
Google Scholar
S.I. Butt and J.E. Pečarić, Generalized Hermite–Hadamard’s inequality, Proc. A. Razmadze Math. Inst. 163 (2013), 9–27.
Google Scholar
S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
Google Scholar
S. Faisal, M.A. Khan, and S. Iqbal, Generalized Hermite–Hadamard–Mercer type inequalities via majorization, Filomat 36 (2022), no. 2, 469–483.
Google Scholar
J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.
Google Scholar
G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, 2nd Ed., Cambridge, at the University Press, 1952.
Google Scholar
C. Hermite, Sur deux limites d’une intégrale définie, Mathesis 3 (1883), 1–82.
Google Scholar
J.L.W.V. Jensen, Om konvekse Funktioner og Uligheder mellem Middelvaerdier, Nyt. Tidsskr. Math. 16B (1905), 49–68.
Google Scholar
J.L.W.V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175–193.
Google Scholar
M. Kunt and İ. İşcan, Fractional Hermite–Hadamard–Fejér type inequalities for GA-convex functions, Turkish J. Ineq. 2 (2018), no. 1, 1–20.
Google Scholar
D.S. Mitrinović, Analytic Inequalities, Die Grundlehren der mathematischen Wissenschaften, 165, Springer-Verlag, New York-Berlin, 1970.
Google Scholar
D.S. Mitrinović, J.E. Pečarić, and A.M. Fink, Classical and New Inequalities in Analysis, Math. Appl. (East European Ser.), 61, Kluwer Academic Publishers Group, Dordrecht-Boston-London, 1993.
Google Scholar
C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155–167.
Google Scholar
M.E. Özdemir, M. Avci, and H. Kavurmaci, Hermite–Hadamard-type inequalities via (α,m)-convexity, Comput. Math. Appl. 61 (2011), no. 9, 2614–2620.
Google Scholar
J.E. Pečarić, F. Proschan, and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Math. Sci. Engrg., 187, Academic Press, Inc., Boston, MA, 1992.
Google Scholar
M. Qu, W. Liu, and J. Park, Some new Hermite–Hadamard-type inequalities for geometric-arithmetically s-convex functions, WSEAS Trans. Math. 13 (2014), 452–461.
Google Scholar
A.W. Roberts and D.E. Varberg, Convex Functions, Pure Appl. Math., 57, Academic Press, New York-London, 1973.
Google Scholar
M.Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal. 2 (2008), no. 3, 335–341.
Google Scholar
S. Simić and B. Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, J. Inequal. Appl. 2021, Paper No. 72, 7 pp.
Google Scholar
W.T. Sulaiman, Some refinements of the Hermite–Hadamard inequality concerning products of convex functions, J. Math. Comput. Sci. 2 (2012), no. 1, 54–60.
Google Scholar
M. Vivas-Cortez, M.U. Awan, M.Z. Javed, A. Kashuri, M.A. Noor, and K.I. Noor, Some new generalized κ-fractional Hermite–Hadamard–Mercer type integral inequalities and their applications, AIMS Math. 7 (2022), no. 2, 3203–3220.
Google Scholar
J. Wang, C. Zhu, and Y. Zhou, New generalized Hermite–Hadamard type inequalities and applications to special means, J. Inequal. Appl. 2013, 2013:325, 15 pp.
Google Scholar