1. D. Czapla, S.C. Hille, K. Horbacz, and H. Wojewódka-Sciążko, The law of the iterated logarithm for a piecewise deterministic Markov process assured by the properties of the Markov chain given by its post-jump locations, Stoch. Anal. Appl. 39 (2021), no. 2, 357–379.
2. D. Czapla, K. Horbacz, and H. Wojewódka-Sciążko, Ergodic properties of some piecewise-deterministic Markov process with application to a gene expression modelling, Stochastic Process. Appl. 130 (2020), no. 5, 2851–2885.
3. D. Czapla, K. Horbacz, and H. Wojewódka-Sciążko, The Strassen invariance principle for certain non-stationary Markov-Feller chains, Asymptot. Anal. 121 (2021), no. 1, 1–34.
4. D. Czapla and J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson-driven stochastic differential equation, Dyn. Syst. 34 (2019), no. 1, 130–156.
5. M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), no. 3, 353–388.
6. S.C. Hille, K. Horbacz, T. Szarek, and H. Wojewódka, Limit theorems for some Markov chains, J. Math. Anal. Appl. 443 (2016), no. 1, 385–408.
7. A. Khintchine, Über einen Satz der Wahrscheinlichkeitsrechnung, Fund. Math. 6 (1924), 9–20.
8. A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), 126–135.
9. T. Komorowski, C. Landim, and S. Olla, Fluctuations in Markov Processes. Time Symmetry and Martingale Approximation, Grundlehren der Mathematischen Wissenschaften, 345, Springer, Heidelberg, 2012.
10. T. Komorowski and A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stochastic Process. Appl. 122 (2012), no. 5, 2155–2184.
11. J. Kubieniec, Random dynamical systems with jumps and with a function type intensity, Ann. Math. Sil. 30 (2016), 63–87.
12. A. Lasota, From fractals to stochastic differential equations, in: P. Garbaczewski et al. (Eds.), Chaos – The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Physics, 457, Springer, Berlin, 1995, pp. 235–255.
13. A. Lasota and J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), no. 1, 41–77.
14. T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, and M. Kimmel, Transcriptional stochasticity in gene expression, J. Theoret. Biol. 238 (2006), no. 2, 348–367.
15. M.C. Mackey, M. Tyran-Kamińska, and R. Yvinec, Dynamic behavior of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math. 73 (2013), no. 5, 1830–1852.
16. O. Zhao and M. Woodroofe, Law of the iterated logarithm for stationary processes, Ann. Probab. 36 (2008), no. 1, 127–142.
Google Scholar