1. Badora R., Przebieracz B., Volkmann P., Stability of the Pexider functional equation, Annales Mathematicae Silesianae 24 (2010), 7–13.
2. Castillo J.M.F., Gonzáles M., Three-space Problems in Banach Space Theory, Lecture Notes in Mathematics 1667, Springer 1997.
3. Chaljub-Simon A., Volkmann P., Caractérisation du module d’une fonction additive a l’aide d’une équation fonctionnelle, Aequationes Math. 47 (1994), no. 1, 60–68.
4. Dolinar G., Molnár L., Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnov metric, J. Math. Anal. Appl. 348 (2008), 494–498.
5. Ger R., Stability aspects of delta-convexity, in: Stability of Hyers–Ulam type (eds. Th.M. Rassias and J. Tabor) Hardonic Press, Palm Harbor, 1994, pp. 99–109.
6. Ger R., Stability of polynomial mappings controlled by n-convex functionals, in: Inequalities and Applications, A Volume dedicated to W. Walter (ed. R.P. Agarwal), World Scientific Series in Applied Analysis, World Scientific Publishing Company, River Edge, NJ, 1994, pp. 255–268.
7. Ger R., Gilányi A., Volkmann P., 1. Remark (Completeness of normed spaces as a consequence of the stability of some functional equations), Report of Meeting, Ann. Math. Silesianae 23 (2009), 112–113.
8. Járai A., Lajkó K., Mészáros F., On measurable functions satisfying multiplicative type functional equations almost everywhere, Inequalities and Applications ’10, International Series of Numerical Mathematics, Birkhauser Verlag, submitted.
9. Kalton N.J., The three space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243–276.
10. Kalton N.J., Peck N.T., Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30.
11. Kalton N.J., Roberts J.W., Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278 (1983), 803–816.
12. Lisak A., Sablik M., Trapezoidal rule revisited, Bulletin of the Institute of Mathematics Academia Sinica, to appear.
13. Mészáros F., A functional equation and its application to the characterization of gamma distributions, Aequationes Math. 79 (2010), 53–59.
14. Moslehian M.S., 3. Problem, Inequalities and Applications (Eds. C. Bandle, et al.), Birkhäuser Verlag, Basel, 2009.
15. Najati A., On the completeness of normed spaces, Applied Math. Letters 23 (2010), 880–882.
16. Schwaiger J., 12. Remark, Report of Meeting, Aequationes Math. 35 (1988), 120–121.
17. Stieltjes T.J., Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8 (1894), 1–122; 9 (1894), 1–47.
18. Veselý L., Zajiček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289, Polish Scientific Publishers, Warszawa, 1989.
19. Volkmann P., O stabilności równań funkcyjnych o jednej zmiennej, Sem. LV no. 11 (2001), 6pp., Errata ibid. no. 11bis (2003), 1p., http://www.math.us.edu.pl/smdk.
Google Scholar