Report of Meeting. The Third Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities January 29 - February 1, 2003, Będlewo, Poland



Abstract

Report of Meeting. The Third Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities January 29 - February 1, 2003, Będlewo, Poland.


Keywords

functional equations and inequalities; convex functions; means

1. J.A. Baker, On some mathematical characters, Glasnik Mat. 25 (45) (1990), 319-328.
2. K. Baron, P. Volkmann, On a theorem of van der Corput, Abh. Math. Sem. Univ. Hamburg 61 (1991), 189-195.
3. J.G. van der Corput, Goniometrische functies gekarakteriseerd door een functionaalbetrekking, Euclides 17 (1940), 55-75.
4. P. Flor, Remark on Baker's problem, Report of meeting, The twenty-eight international symposium on functional equations (August 23 - September 1, 1990, Graz-Mariatrost, Austria), Aequationes Math. 41 (1991), 298.
5. A. Házy, Zs. Páles, Approximately midconvex functions.
6. A. Járai, On measurable solutions of functional equations, Publ. Math. Debrecen 26 (1979), 17-35.
7. A. Járai, Regularity properties of functional equations, Aequationes Math. 25 (1982), 52-66.
8. A. Járai, Regularity Properties of Functional Equation in Several Variables (to appear by Kluwer Publisher).
9. P. Lakatos, L. Losonczi, On zeros of reciprocal polynomials of odd degree, (submitted to J. of Inequalities in Pure and Applied Math.).
10. L. Losonczi, Equality of two variable Cauchy mean values, Aequationes Math. (to appear).
11. Z. Nitecki, An introduction to the orbit structure of diffeomorphisms, The MIT Press, Cambridge, MA 1971.
12. Zs. Páles, Bernstein-Doetsch type results for general functional inequalities, Roczn. Nauk.-Dydakt. Prace Mat. 17 (2000), 197-206 (Dedicated to Professor Zenon Moszner on his 70th birthday).
13. Zs. Páles, Problems in regularity theory in functional equations, Aequationes Math. 63 (2002), 1-17.
14. M. Sablik, A functional congruence revisited, Selected topics in functional equations and iteration theory, Proceedings of the Austrian-Polish seminar (Graz 1991), Grazer Math. Ber. 316 (1992), 181-200.
15. A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, (to appear in Ramanujan Journal).
16. T. Szostok, On a modified version of Jensen Inequality, J. of Inequal. & Appl. 3 (1999), 331-347.
Download

Published : 2003-09-30


AMSilR. (2003). Report of Meeting. The Third Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities January 29 - February 1, 2003, Będlewo, Poland. Annales Mathematicae Silesianae, 17, 67-84. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14102

Redakcja AMSil  annales.math@us.edu.pl
Instytut Matematyki, Uniwersytet Śląski w Katowicach  Poland



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.