1. F. Bonahon, Geometric structures on 3-manifolds, in: R.J. Daverman, R.B. Sher (eds.), Handbook of Geometric Topology, Elsevier, Amsterdam, 2002, pp. 93–164.
2. R.D. Canary and D. McCullough, Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups, Mem. Amer. Math. Soc. 172 (2004), no. 812, 218 pp.
3. A.L. Edmonds, A topological proof of the equivariant Dehn lemma, Trans. Amer. Math. Soc. 297 (1986), no. 2, 605–615.
4. J. Hempel, 3-Manifolds, AMS Chelsea Publishing, Providence, 2004.
5. M. Jankins and W. D. Neumann, Lectures on Seifert Manifolds, Brandeis Lecture Notes, 2, Brandeis University, Waltham, 1983.
6. J. Kalliongis and A. Miller, The symmetries of genus one handlebodies, Canad. J. Math. 43 (1991), no. 2, 371–404.
7. J. Kalliongis and R. Ohashi, Finite actions on the 2-sphere, the projective plane and I-bundles over the projective plane, Ars Math. Contemp. 15 (2018), no. 2, 297–321.
8. J.M. Lee, Smooth manifolds, in: J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2003, pp. 1–29.
9. W.H. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86 (1986), no. 2, 287–346.
10. W.D. Neumann and F. Raymond, Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, in: K.C. Millett (ed.), Algebraic and geometric topology, Lecture Notes in Math., 664, Springer, Berlin, 1978, pp. 163–196.
11. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487.
12. H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238.
13. W.P. Thurston, The Geometry and Topology of Three-Manifolds, Lecture Notes, 1979.
Google Scholar