Report of Meeting. The Thirteenth Katowice–Debrecen Winter Seminar on Functional Equations and Inequalities, Zakopane (Poland), January 30 – February 2, 2013
Abstract
Report of Meeting. The Thirteenth Katowice–Debrecen Winter Seminar on Functional Equations and Inequalities, Zakopane (Poland), January 30 – February 2, 2013.
Keywords
functional equations and inequalities; convex functions; means
References
2. Alsina C., Ger R., On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), no. 4, 373–380.
3. Azócar A., Giménez J., Nikodem K., Sánchez J.L., On strongly midconvex functions, Opuscula Math. 31 (2011), 15–26.
4. Baker, J.A., An analogue of the wave equation and certain related functional equations, Canad. Math. Bull. 12 (1969), 837–846.
5. Baker J.A., The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411–416.
6. Baron K., Matkowski J., Nikodem K., A sandwich with convexity, Math. Pannon. 5 (1994), 139–144.
7. Bernstein F., Doetsch G., Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514–526.
8. Boros Z., Páles Zs., $\mathbb{Q}$-subdifferential of Jensen-convex functions, J. Math. Anal. Appl. 321 (2006), 99–113.
9. Bourbăcuţ N., Problem 11641, Amer. Math. Monthly 119 (2012), 345.
10. Daroczy Z., On the equality and comparison problem of a class of mean values, Aequationes Math. 81 (2011), 201–208.
11. Dinghas A., Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
12. Fechner W., Some inequalities connected with the exponential function, Arch. Math., Brno 44 (2008), no. 3, 217–222.
13. Fechner W., On some functional inequalities related to the logarithmic mean, Acta Math. Hung. 128 (2010), no. 1–2, 36–45.
14. Fechner W., Functional inequalities and equivalences of some estimates, in: Inequalities and Applications 2010, dedicated to the Memory of Wolfgang Walter, Hajdúszoboszló, Hungary International Series of Numerical Mathematics 161, Birkhäuser, Basel, 2012, pp. 231–240.
15. Fechner W., Ger R., Some stability results for equations and inequalities connected with the exponential functions, in: Functional Equations and Difference Inequalities and Ulam Stability Notions (F.U.N.), Mathematics Research Developments, Nova Science Publishers Inc., New York, 2010, pp. 37–46.
16. Ger R., Nikodem K., Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661–665.
17. Ger R., Šemrl P., The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), 779–787.
18. Gilányi A., Páles Zs., On Dinghas-type derivatives and convex functions of higher order, Real Anal. Exchange 27 (2001/2002), 485–493.
19. Girgensohn R., Lajkó K., A functional equation of Davison and its generalization, Aequationes Math. 60 (2000), 219–222.
20. Hopf E., Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften, Diss., Friedrich Wilhelms Universität Berlin, 1926.
21. Kominek Z., Kuczma M., Theorems of Bernstein–Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. (Basel) 52 (1989), 595–602.
22. Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Second Edition, ed. by Gilányi A., Birkhäuser Verlag, Basel, 2009.
23. Laczkovich M., Székelyhidi G., Harmonic analysis on discrete abelian groups, Proc. Amer. Math. Soc. 133 (2005), 1581–1586.
24. Maksa Gy., Rätz J., Remark 5 in: Proceedings of the 19th ISFE, Nantes–La Turballe, France 1981, Centre for Information Theory, Univ. of Waterloo, 1981.
25. Mureńko A., A generalization of Bernstein–Doetsch theorem, Demonstratio Math. 45 (2012), 35–38.
26. Popoviciu T., Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1–85.
27. Székelyhidi L., On a class of linear functional equations, Publ. Math. (Debrecen) 29 (1982), 19–28.
28. Varga A., On additive solutions of a linear equation, Acta Math Hungar. 128 (2010), 15–25.
29. Varga A., Vincze Cs., On a functional equation containing weighted arithmetic means, International Series of Numerical Mathematics 157 (2009), 305–315.
30. Varga A., Vincze Cs., On Daróczy’s problem for additive functions, Publ. Math. Debrecen 75 (2009), 299–310.
31. Veselý L., Zajiček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289, Polish Scientific Publishers, Warszawa, 1989.
Instytut Matematyki, Uniwersytet Śląski w Katowicach Poland
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.